A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode (2025)

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: abattery of choices. Science 334, 928–935 (2011).

    Article Google Scholar

  2. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

    Article Google Scholar

  3. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article Google Scholar

  4. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article Google Scholar

  5. Wanger, C. T. The lithium future—resources, recycling, and the environment. Conserv. Lett. 4, 202–206 (2011).

    Article Google Scholar

  6. Jacoby, M. Safer lithium-ion batteries. Chem. Eng. News 91, 33–37 (2013).

    Google Scholar

  7. Roth, P. E. & Orendorff, C. J. How electrolytes influence battery safety. Electrochem. Soc. Interface 21, 45–49 (2012).

    Article Google Scholar

  8. Zheng, L., Xiang, K., Xing, W., Carter, W. C. & Chiang, Y. M. Reversible aluminum-ion intercalation in prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv. Energy Mater. 5, 1401410 (2015).

    Article Google Scholar

  9. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Article Google Scholar

  10. Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article Google Scholar

  11. Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071–4079 (2015).

    Article Google Scholar

  12. Sun, X., Duffort, V., Mehdi, B. L., Browning, N. D. & Nazar, L. F. Investigation of the mechanism of Mg insertion in birnessite in non-aqueous and aqueous rechargeable Mg-ion batteries. Chem. Mater. 28, 534–542 (2016).

    Article Google Scholar

  13. Chamoun, M. & Steingart, D. et al. Hyper-dendritic nanoporous zinc foam anodes. NPG Asia Mater. 7, 178 (2015).

    Article Google Scholar

  14. White, C. D. & Zhang, K. M. Using vehicle-to-grid technology for frequency regulations and peak-load reduction. J. Power Sources 196, 3972–3980 (2011).

    Article Google Scholar

  15. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article Google Scholar

  16. Kohler, J., Makihara, H., Uegaito, H., Inoue, H. & Toki, M. LiV3O8: characterization as anode materials for an aqueous rechargeable Li-ion battery system. Electrochim. Acta 46, 59–65 (2000).

    Article Google Scholar

  17. Wang, G. J. et al. An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem. Int. Ed. 46, 295–297 (2007).

    Article Google Scholar

  18. Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article Google Scholar

  19. Zheng, L., Young, D., Xiang, K., Carter, W. C. & Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2012).

    Google Scholar

  20. Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    Article Google Scholar

  21. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    Article Google Scholar

  22. Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).

    Article Google Scholar

  23. Xu, C. J., Li, B. H., Du, H. D. & Kang, F. Y. Energetic zinc ion chemistry: therechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012).

    Article Google Scholar

  24. Chen, L., Zhang, L. Y., Zhou, X. F. & Liu, Z. P. Aqueous batteries based on mixed monovalence metal ions: a new battery family. ChemSusChem 7, 2295–2302 (2014).

    Article Google Scholar

  25. Zhang, L., Chen, L., Zhou, X. & Liu, Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015).

    Article Google Scholar

  26. Lee, B. et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).

    Article Google Scholar

  27. Alfaruqi, M. H. et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609–3620 (2015).

    Article Google Scholar

  28. Zhang, X. G. Corrosion and Electrochemistry of Zinc (Springer, 1996).

    Book Google Scholar

  29. Goh, F. W. T. et al. A near-neutral chloride electrolyte for electrically rechargeable zinc-air batteries. J. Electrochem. Soc. 161, A2080–A2086 (2014).

    Article Google Scholar

  30. Gupta, T. & Steingart, D. et al. Improving the cycle life of a high-rate, high-potential aqueous dual ion battery using hyper-dendritic zinc and copper hexacyanoferrate. J. Power Sources 325, 22–29 (2016).

    Article Google Scholar

  31. Jia, Z., Wang, B. & Wang, Y. Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mater. Chem. Phys. 149, 601–606 (2015).

    Article Google Scholar

  32. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article Google Scholar

  33. Chernova, N. A., Roppolo, M., Dillon, A. C. & Whittingham, M. S. Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526–2552 (2009).

    Article Google Scholar

  34. VanadiumCorp Vanadium Electrolyte Price (VanadiumCorp Resource, 2015); www.vanadiumcorp.com/tech/companies/price

  35. Chirayil, T., Zavalij, P. Y. & Whittingham, M. S. Hydrothermal synthesis of vanadium oxides. Chem. Mater. 10, 2629–2640 (1998).

    Article Google Scholar

  36. Oka, Y., Tamada, O., Yao, T. & Yamamoto, N. Synthesis and crystal structure of σ-Zn0.25V2O5. H2O with a novel type of V2O5 layer. J. Solid State Chem. 126, 65–73 (1996).

    Article Google Scholar

  37. Yao, T., Oka, Y. & Yamamoto, N. Layered structures of vanadium pentoxide gels. Mater. Res. Bull. 27, 669–675 (1992).

    Article Google Scholar

  38. Wood, D. L., Li, J. & Daniel, C. Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234–242 (2015).

    Article Google Scholar

  39. Mancini, M., Nobili, F., Tossici, R., Wohlfahrt-Mehrens, M. & Marassi, R. High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J. Power Sources 196, 9665–9671 (2011).

    Article Google Scholar

  40. Zhu, Y. & Wang, C. Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 114, 2830–2841 (2010).

    Article Google Scholar

  41. Li, B. et al. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012).

    Article Google Scholar

  42. Park, M., Zhang, X., Chung, M., Less, B. G. & Sastry, M. A. A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010).

    Article Google Scholar

  43. Biesinger, M. C., Lau, L. W. M., Gersonb, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article Google Scholar

  44. Buchholz, D., Chagas, L. G., Vaalma, C., Wu, L. & Passerini, S. Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J. Mater. Chem. A 2, 13415–13421 (2014).

    Article Google Scholar

  45. Lin, C. T. et al. Study of intercalation/deintercalation of NaxCoO2 single crystals. J. Cryst. Growth 275, 606–616 (2005).

    Article Google Scholar

  46. Radha, S., Jayanthi, K., Breu, J. & Kamath, P. V. Relative humidity induced reversible hydration of sulfate intercalated layered double hydroxide. Clays Clay Miner. 62, 53–61 (2014).

    Article Google Scholar

  47. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article Google Scholar

  48. Le, D. B. et al. Intercalation of polyvalent cations into V2O5 aerogels. Chem. Mater. 10, 682–684 (1998).

    Article Google Scholar

Download references

A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Mrs. Angelic Larkin

Last Updated:

Views: 6021

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Mrs. Angelic Larkin

Birthday: 1992-06-28

Address: Apt. 413 8275 Mueller Overpass, South Magnolia, IA 99527-6023

Phone: +6824704719725

Job: District Real-Estate Facilitator

Hobby: Letterboxing, Vacation, Poi, Homebrewing, Mountain biking, Slacklining, Cabaret

Introduction: My name is Mrs. Angelic Larkin, I am a cute, charming, funny, determined, inexpensive, joyous, cheerful person who loves writing and wants to share my knowledge and understanding with you.